Simpler variational problems for statistical equilibria of the 2D Euler equation and other systems with long range interactions
نویسندگان
چکیده
منابع مشابه
Statistical Mechanics of systems with long range interactions
Recent theoretical studies of statistical mechanical properties of systems with long range interactions are briefly reviewed. In these systems the interaction potential decays with a rate slower than 1/rd at large distances r in d dimensions. As a result, these systems are non-additive and they display unusual thermodynamic and dynamical properties which are not present in systems with short ra...
متن کاملStatistical mechanics of systems with long range interactions
Abstract. Many physical systems are governed by long range interactions, the main example being self-gravitating stars. Long range interaction implies a lack of additivity for the energy. As a consequence, the usual thermodynamic limit is not appropriate. However, by contrast with many claims, the statistical mechanics of such systems is a well understood subject. In this proceeding, we explain...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولThe Higher Integrability and the Validity of the Euler-Lagrange Equation for Solutions to Variational Problems
We prove higher integrability properties of solutions to the problem of minimizing ∫ Ω L(x, u(x),∇u(x))dx, where ξ → L(x, u, ξ) is a convex function satisfying some additional conditions. As an application, we prove the validity of the Euler–Lagrange equation for a class of functionals with growth faster than exponential.
متن کاملQuasilinear theory of the 2D euler equation
We develop a quasilinear theory of the 2D Euler equation and derive an integrodifferential equation for the evolution of the coarse-grained vorticity omega;(r,t). This equation respects all of the invariance properties of the Euler equation and conserves angular momentum in a circular domain and linear impulse in a channel. We show under which hypothesis we can derive an H theorem for the Fermi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica D: Nonlinear Phenomena
سال: 2008
ISSN: 0167-2789
DOI: 10.1016/j.physd.2008.02.029